243. Diastereoselectivity in the Reaction of N-Glycosyl-nitrones: 1,3-Dipolar Cycloaddition and Addition of Phosphite Anion

by Bruno Bernet, Ewa Krawczyk, and Andrea Vasella*
Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

(1.VIII.85)

Abstract

The direction of approach of dibenzyl phosphite on the one hand and of dipolarophiles on the other hand to the spironitrone 7 was examined. The nitrone 7 was prepared from the lactone 3 . The nucleophilic addition of dibenzyl phosphite gave 8 as a single adduct (86%). Its structure was established by X-ray analysis. From the cycloaddition of methyl methacrylate, the products $\mathbf{9 a}, \mathbf{9 b}, \mathbf{1 1 a}$, and $\mathbf{1 1 b}(83: 2: 7.5: 7.5,81 \%)$ were isolated. The structure of the main adduct $\mathbf{9 a}$ was established by an X-ray analysis of a derivative of it, and the structures of the other adducts were deduced from their NMR spectra. The cycloaddition of 7 and methyl acrylate gave the adducts 10a, 10b, 12a, 13a, 13b, and 14a ($27: 10: 54: 1: 2: 6,87 \%$). The structures of these compounds were deduced from their NMR spectra. The results are discussed in relation to prior hypothesis.

1. Introduction. - The nucleophilic addition of dialkyl phosphite anions to (Z)-C-alkyl- N-(2,3:5,6-di- O-isopropylidene- α-D-mannofuranosyl)nitrones 1 gives the (1 S)- N -glycosyl- N-hydroxyaminophosphonates 2 with a diastereoselectivity of about 90% [1] (Scheme 1). A high diastereoselectivity had been predicted, based on the analogy between a LUMO-controlled 1,3-dipolar cycloaddition of N -glycosyl-nitrones and the addition of nucleophiles to it [1].

Schemel

1

2
a $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}, \quad \mathrm{b} \quad \mathrm{R}=\mathrm{CHMe}_{2}, \quad \mathrm{C} \quad \mathrm{R}=\mathrm{CH}_{3}$
The rationalization of the stereochemistry postulates that the nitrone reacts in a conformation, where the planes of the nitrone function and the $C(1)-O$ bond are perpendicular to each other, and where the alkylidene moiety of the nitrone function is sterically least congested. In the 1,3-dipolar cycloaddition of methacrylates, the dipolarophile approaches the nitrone either along the $\mathrm{C}(1)-\mathrm{O}$ bond ('endo'-orientation of the CH_{3} group) or from the side opposite to the $\mathrm{C}(1)-\mathrm{O}$ bond ('exo'-orientation of the CH_{3} group). The former mode of approach was given preference, since it leads to an antiperiplanar (vs. coplanar) arrangement of the developing lone pair at the N -atom and the $\mathrm{C}(1)-\mathrm{O}$ bond, and also because the opposite sense of chirality is induced in the cycloaddi-
tion to acrylate [1] [2]. It was anticipated that dipolarophiles and nucleophiles should approach such nitrones from the same side.

According to these postulates, the nucleophilic addition of phosphite anions to 1 (Scheme 1) should have given the ($1 R$)-configurated addition products 2 . Although a 1,3-dipolarophile and a charged nucleophile may not approach the nitrone from the same side - a charge-dipole interaction being involved in the latter case - the contrast between result and prediction requires a test of the validity of the above mentioned postulates for both the 1,3-dipolar cycloaddition of N-glycosyl-nitrones and the addition of nucleophiles to them.
2. Preparation of the Spironitrone 7. Addition of Lithium Dibenzyl Phosphite. Examination of the stereochemistry of the nucleophilic addition of a dialkyl phosphite anion to a configurationally and conformationally defined nitrone on the one hand and of the 1,3-dipolar cycloaddition of the same nitrone on the other hand should reveal the direction of approach of both the anion and the 1,3-dipolarophile. The spironitrone 7 (Scheme 2) in which the nitrone function and the $\mathrm{C}(4)-\mathrm{O}$ bond (corresponding to the $\mathrm{C}(1)-\mathrm{O}$ bond in $\mathbf{1}$) are about perpendicular to each other seemed to be appropriate.

For its preparation, the spirolactone 3 [3] (Scheme 2) was first reduced with diisobutylaluminium hydride (D1BAH) to give a crystalline hemiacetal 4 (88%). Treatment of 4 with excess hydroxylamine in MeOH at reflux gave rapidly and quantitatively the oximes 5 (see below). Replacing the solvent by PrOH gave, after 20 h at reflux, a mixture consisting of 5 , the dioximes 6 , and some nitrone 7 . During chromatography on silica gel, 6 was transformed into 7, which was obtained as a colourless oil in yields of up to 50% from 4.

The hemiacetal 4 showed mutorotation $\left([\alpha]_{D}^{25}=+46.5^{\circ} \rightarrow+39.9^{\circ}, \mathrm{CHCl}_{3}, 20 \mathrm{~h}\right)$. A $11: 9$ ratio of two main anomers was evident from ${ }^{1} \mathrm{H}$-NMR spectroscopy. The configuration of the crystalline material is not known. The monooximes 5 are a $3: 2(E) /(Z)$-mixture of mainly one ($\alpha-\mathrm{D}$?) hemiacetal. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 6 , two signals for $\mathrm{H}-\mathrm{C}(1)$ showed the presence of at least two diastereoisomers $((E) /(Z) 3: 2)$. The IR spectrum of 7 showed a characteristic nitrone band at $1580 \mathrm{~cm}^{-1}$ and no OH or $\mathrm{C}=\mathrm{O}$ bands. The MS showed M^{+}at $m / z 313$ and further peaks at $m / z 298$ and 282 , indicating loss of a CH_{3} group, and of a CH_{3} group and monooxygen, respectively.

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of 7 showed the presence of a single diastereoisomer. No other diastereoisomer was detectable among the reaction products. The configuration
at the anomeric centre is evident from the X-ray analysis of the addition product 8 and the transformed addition product $\mathbf{1 5}$ (see below). Similar values of the specific rotation of the spironitrone $7\left([\alpha]_{D}^{25}=+42.4^{\circ}, \mathrm{CHCl}_{3}\right)$ and of the spirolactone $3\left([\alpha]_{\mathrm{D}}^{25}=+47.7^{\circ}, \mathrm{CHCl}_{3}\right)$ evidence the same configuration of the spiro centre.

The nucleophilic addition of lithium dibenzyl phosphite to $7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} ;-70^{\circ}\right.$ to $\left.-20^{\circ}\right)$ gave 8 in a yield of 86% as a single diastereoisomer. Its ${ }^{34} \mathrm{P}$-NMR spectrum showed a signal at 28.22 ppm , typical for N-hydroxyaminophosphonates [1] and its structure was established by an X-ray analysis ${ }^{1}$): the phosphoryl group at the pyrrolidine ring of $\mathbf{8}$ is arranged trans to the ring O -atom and also trans to the $\mathrm{N}-\mathrm{OH}$ group.

Fig. 1. ORTEP Representation of the phosphonate 8

11a $\quad \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{CH}_{3}, \quad \mathbf{R}^{2}=\mathrm{CH}_{3}$
11b $\quad \mathbf{R}^{1}=\mathrm{CH}_{3}, \quad \mathbf{R}^{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
12a $\quad \mathbf{R}^{1}=\mathrm{CO}_{2} \mathrm{CH}_{3}, \quad \mathrm{R}^{2}=\mathrm{H}$
13a
14a
12b
$\mathbf{R}^{1}=\mathrm{H}, \quad \mathbf{R}^{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
13b
3. 1,3-Dipolar Cycloaddition of Methyl Methacrylate. - The addition of methyl methacrylate to $\mathbf{7}$ afforded 4 products ($\mathbf{9 a}, \mathbf{9 b}, \mathbf{1 1 a}$, and 11b) in the ratio of $83: 2: 7.5: 7.5$ (see Table 1). Two fractions were obtained by column chromatography: a faster moving one, which upon crystallization gave the main adduct 9 a as colourless fine needles, and a slower moving one. Chromatography of the mother liquors of 9 a gave the adduct $\mathbf{9 b}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy showed the slower moving fraction to be a $1: 1$ mixture 11a/11b. Both products were obtained as colourless fine needles after HPLC.

[^0]Table 1. Ratios of Products of the 1,3-Dipolar Addition of Methyl Methacrylate and Acrylate to the Nitrone 7

	Addition of methyl methacrylate				Addition of methyl acrylate		
	Product	Run 1	2	3	Product	Run 4	5
Ratio of products [\%]	9 a	83	85.5	83	10a	27	25
	9 b	2	1.5	1	10b	10	8.5
	11a	7.5	6.5	8	12a	54	56.5
	11b	7.5	6.5	8	12b	0	0
					13a	1	1
					13b	2	2
					14a	6	7
Total yield of products [\%]		81	84	87		87	85

Selective hydrolysis of $\mathbf{9 a}$ and treatment of the resulting diol with N, N^{\prime}-carbonyldiimidazole yielded the cyclic carbonate $\mathbf{1 5}(57 \%)$. Crystallization from $\mathrm{Et}_{2} \mathrm{O} /$ hexane gave crystals suitable for X-ray analysis (see Footnote 1 and Fig. 2). At the pyrrolidine ring, $\mathrm{C}(3)$ and the O -atom of the isoxazolidine moiety are arranged 'trans' to the ring O -atom of the furanose part. The COOCH_{3} group is in 'endo'-position of the bicyclic 2-oxapyrrolizidine ring system.

15

Fig. 2. ORTEP Representation of the cyclocarbonate 15
The mass spectra of $\mathbf{9 a}, \mathbf{9 b}, \mathbf{1 1 a}$, and $\mathbf{1 1 b}$ suggest that they are isomers. Their configurations were deduced from a comparison of their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra with those of 15 (see Table 2-4).

In the ${ }^{\mathbf{1}} \mathrm{H}$-NMR spectra of $\mathbf{1 5}, \mathbf{9 a}$, and $\mathbf{9 b}$, the doublets of $\mathrm{H}-\mathrm{C}(8)$ appear at $5.08-5.13 \mathrm{ppm}$ and those of $\mathbf{1 1 a}$ and 11 b at $4.82-4.9 \mathrm{ppm}$. Thus, 9 a and 9 b must be 'anti'-adducts and 11 a and 11 b 'syn'-adducts ${ }^{2}$). In the ${ }^{13} \mathrm{C}$-NMR spectrum, only $\mathrm{C}(8)$ of the 'ant t '-adducts should show a γ effect caused by the ring O -atom of the isoxazolidine

[^1]Table 2. ${ }^{1} \mathrm{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Chemical Shifts of the Addition Products to the Nitrone 7

Proton	Chemicals shifts [ppm]										
	15	9a	9b	11a	11b	10a	10b	12a	14a/13a $\left.{ }^{\text {a }}\right)^{\text {b }}$)	13b ${ }^{\text {a }}$)	8)
$\mathrm{H}-\mathrm{C}(2)^{\text {d }}$)	-	-	-	-	-	4.54	4.52	4.76	4.09 (4.19)	4.00	-
$\mathrm{H}^{\prime}-\mathrm{C}(2)^{\text {d }}$)	-	-	-	-	-	-	-	-	4.26	4.10	-
$\mathrm{H}-\mathrm{C}(3)^{\text {d }}$)	2.42	2.43	1.80	2.21	2.01	2.40	2.26	2.43	3.27 (3.12)	3.74	-
$\mathrm{H}^{\prime}-\mathrm{C}(3)^{\text {d }}$)	2.58	2.62	3.18	2.50	2.75	2.69	2.84	2.52	-(-)	-	-
$\mathrm{H}-\mathrm{C}(4)^{\text {e }}$)	3.95	3.96-3.88	3.89	4.07-3.96	3.96-3.84	4.03-3.97	4.00-3.83	3.89	3.95	4.15-4.08	3.63-3.59
$\mathrm{H}-\mathrm{C}(5)^{\text {d }}$)	1.54	1.55	1.56	1.83	1.81	1.50	1.61	1.83	1.91	1.50	
$\mathrm{H}^{\prime}-\mathrm{C}(5)^{\text {d }}$)	2.10	2.06	2.14	2.06	2.03	2.23-2.10	2.12	2.11	2.12	1.98	
$\mathrm{H}-\mathrm{C}(6)^{\text {d }}$)	1.86	1.82	1.87	1.90	1.98	1.88	1.86	1.92	1.90-1.83	1.86	2.14-1.66
$\mathrm{H}^{\prime}-\mathrm{C}(6)^{\text {d }}$)	2.33	2.32	2.33	2.23	2.25	2.23-2.10	2.48	2.25	2.24-2.16	2.18	
$\mathrm{H}-\mathrm{C}(8)$	5.10	5.08	5.13	4.82	4.90-4.82	5.05	5.12	4.92	4.80 (5.01)	5.00	4.83
$\mathrm{H}-\mathrm{C}(9)$	4.79	4.84	4.84	4.86	4.90-4.82	4.86	4.85	4.89	4.86 (4.81)	4.81	4.87
$\mathrm{H}-\mathrm{C}(10)$	4.45	4.08	4.05	4.30	4.50	4.07	4.02	433429	4.24	4.03	4.43
$\mathrm{H}-\mathrm{C}(11)$	4.92	4.35	4.35	4.25	4.33	4.36	4.36	$4.33-4.29$	4.28 (4.32)	4.33	4.24
$\mathrm{H}-\mathrm{C}(12)^{\text {d }}$)	4.42	3.97	3.96	3.96	4.06	3.95	3.96	3.98	3.96	3.94	4.01
$\mathrm{H}^{\prime}-\mathrm{C}(12)^{\text {d }}$)	4.56	4.07	4.06	4.02	4.10	4.06	4.07	4.08	4.04	4.04	4.05
$\mathrm{CH}_{3}-\mathrm{C}(2)$	1.48	1.51	1.50	1.48	1.63	-	-	-	- ${ }^{-}$)	-	-
OCH_{3}	3.74	3.75	3.76	3.82	3.76	3.77	3.77	3.77	3.70 (3.73)	3.71	-
CH_{3} of iso-	1.42	1.47, 1.44	1.48, 1.44	1.46, 1.44	1.45, 1.43	1.47, 1.43	1.48, 1.43	1.45, 1.44	1.45, 1.44	1.44, 1.41	1.45, 1.42
propylidene	1.28	1.37, 1.35	1.37, 1.36	1.36, 1.32	$1.37,1.30$	1.37, 1.34	1.37, 1.36	1.38, 1.32	1.38, 1.33	1.35, 1.32	1.36, 1.33

[^2]Table 3. 'H-NMR Coupling Constants of the Addition Products to the Nitrone 7

Coupling	Coupling constant [Hz$]^{\text {a }}$)										
	15	9a	9b	11a	11b	10a	10b	12a	14a/13a ${ }^{\text {b }}$)	13b	8
$J\left(2,2^{\prime}\right)$	-	-	-	-	-	-	-	-	7.2 (6.0)	7.9	-
$J(2,3)$	-	-	-	-	-	7.2	6.4	8.9	7.0 (6.0)	7.4	-
$J\left(2,3^{\prime}\right)$	-	-	-	-	-	8.1	9.0	4.2	-	-	-
$J\left(2^{\prime}, 3\right)$	-	-	-	-	-	-	-	-	9.0	7.9	-
$J\left(3,3^{\prime}\right)$	12.8	12.8	12.7	12.4	12.8	12.5	12.6	12.0	-	-	-
$J(3,4)$	7.4	7.4	4.3	6.7	8.7	1.8	2.8	8.9	7.0	7.4	-
$J\left(3^{\prime}, 4\right)$	2.7	2.4	8.3	8.7	6.7	7.2	7.8	8.0	-	-	-
$J(4,5)$	5.0	8.0	4.5	5.0	5.0	9.0	8.0	4.5	3.5	5.7	n.d. ${ }^{\text {c }}$)
$J\left(4,5^{\prime}\right)$	9.0	8.8	8.5	8.0	8.5	4.8	8.8	8.0	8.0	9.0	n.d.
$J\left(5,5^{\prime}\right)$	12.9	12.9	12.4	12.5	12.5	13.0	12.5	12.2	11.6	13.1	n.d.
$J((5,6)$	2.9	2.5	2.3	9.0	8.5	2.2	2.4	8.9	7.5	2.5	n.d.
$J\left(5,6^{\prime}\right)$	10.5	10.5	10.3	10.5	9.3	9.0	10.5	9.4	7.5	11.0	n.d.
$J\left(5^{\prime}, 6\right)$	8.9	8.8	8.3	2.5	2.5	7.8	8.8	2.3	2.5	9.0	n.d.
$J\left(5^{\prime}, 6^{\prime}\right)$	9.0	9.2	9.2	9.0	10.1	n.d.	9.1	8.5	10.5	8.7	n.d.
$J\left(6,6{ }^{\prime}\right)$	13.6	13.5	13.4	12.5	13.4	12.8	13.4	13.4	n.d.	13.4	n.d.
$J(8,9)$	6.0	6.0	6.0	6.0	n.d.	6.0	6.0	6.1	6.0 (6.0)	6.0	6.1
$J(9,10)$	4.0	3.5	3.6	3.8	3.6	3.6	3.7	3.4	3.7 (3.6)	3.6	4.0
$J(10,11)$	3.0	8.1	8.0	7.7	6.5	8.1	8.1	n.d.	6.5 (8.3)	8.0	7.7
$J(11,12)$	8.5	4.3	4.6	4.3	6.3	4.4	4.3	4.6	4.6 (4.6)	4.3	5.0
$J\left(11,12{ }^{\prime}\right)$	7.0	6.2	6.2	6.0	4.9	6.2	6.0	6.0	6.0 (6.3)	6.1	6.2
$J\left(12,12{ }^{\prime}\right)$	8.4	8.6	8.6	8.7	8.7	8.7	8.6	8.6	8.7	8.6	8.5

[^3]Table 4. ${ }^{13} \mathrm{C}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Chemical Shifts of the Addition Products to the Nitrone 7

Carbon	Chemical shifts [ppm]											
	15	9a	9b	11a	11b	10a	10b	12a	14a/13a $\left.{ }^{\text {a }}\right)^{\text {b }}$)	13b ${ }^{\text {a }}$)	8 ${ }^{\text {c }}$	
C(1)	173.22	173.18	n.v. ${ }^{\text {d }}$)	172.66	174.61	171.49	170.96	171.34	172.25 (171.65)	n.v.	-	
C(2)	82.96	82.63	82.58	87.55	87.77	74.91	75.65	80.37	72.96 (68.32)	67.02	-	
C(3)	46.26	46.36	45.98	45.45	46.83	40.37	40.17	41.16	55.29 (38.77)	51.51	-	
C(4)	64.55	64.47	64.47	62.76	63.41	64.03	63.92	62.35	66.68 (68.15)	65.29	60.68	$58.93{ }^{\text {e }}$)
C(5)	29.28	29.54	30.40	31.71	31.50	30.16	$29.33^{\text {h }}$)	30.77	30.46 (30.38)	30.03	30.60	
C(6)	28.74	28.85	29.39	25.89	26.02	29.29	$29.26^{\text {h }}$)	25.78	25.88 (29.66)	29.69	28.49	$28.42^{\text {f }}$)
C(7)	110.25	109.89	109.04	106.03	105.78	110.21	109.91	106.15	106.54 (109.30)	110.05	105.64 ,	$105.44^{\text {g }}$)
C(8)	82.25	82.52	82.58	85.61	85.56	82.61	82.62	85.92	85.94 (82.41)	82.34	84.68	
C(9)	80.20	80.58	80.80	81.06	81.59	80.74	80.66	82.08	82.05 (80.84)	80.71	82.69	
C(10)	77.90	79.78	79.78	80.48	80.49	79.84	80.10	79.49	80.51 (79.84)	80.19	81.18	
C(11)	74.48	73.10	73.19	73.85	74.10	73.06	73.17	73.67	73.77 (73.16)	73.14	73.97	
C(12)	65.75	66.90	66.97	66.43	66.22	66.92	67.02	66.29	66.47 (67.04)	66.63	66.91	
$\mathrm{CH}_{3} \mathrm{O}$	52.39	52.31	52.47	52.63	52.69	52.27	52.30	52.21	52.21 (52.32)	52.08	-	
$\mathrm{CH}_{3}-\mathrm{C}(2)$	24.99	$25.14^{\text {h }}$)	22.94	$25.44^{\text {h }}$)	21.56	-	-	-	- (-)	-	-	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$ -	25.43	26.83	26.87	26.82	26.84	26.78	26.90	26.65	26.78 (26.84)	26.91	26.76	
	23.89	25.94	26.02	25.97	25.85	25.92	25.98	25.80	25.88 (25.98)	26.00	25.90	
	-	$25.25^{\text {h }}$)	25.32	$25.30^{\text {h }}$)	25.47	25.26	25.31	25.33	25.36 (25.36)	25.34	25.35	
	-	24.65	24.77	24.49	24.36	24.58	24.63	24.30	24.42 (24.42)	24.60	24.25	
Other quart.	154.61	111.96	112.08	112.44	112.43	112.21	112.30	112.21	112.51 (112.60)	112.41	112.09	
C-atoms	112.37	108.93	108.95	108.93	108.87	109.12	109.22	108.64	108.94 (109.10)	109.26	108.97	

[^4]moiety. Indeed, $\mathrm{C}(8)$ of $\mathbf{1 5 , 9} \mathbf{9}$, and 9 b are shielded by 3 ppm in comparison with $\mathrm{C}(8)$ of $\mathbf{1 1 a}$ and $\mathbf{1 1 b}$. The signal of $\mathrm{C}(7)$ shows characteristic chemical-shift values: $109-110.3 \mathrm{ppm}$ for the 'anti'- and $105.7-106.1 \mathrm{ppm}$ for the 'syn'-addition products indicating the structural relation between the $\mathrm{N}-\mathrm{O}$ and the $\mathrm{C}(7)-\mathrm{O}$ bond. A further characteristic property is the chemical-shift difference ($\Delta \delta$) between the signals of $\mathrm{C}(5)$ and $\mathrm{C}(6)$: large values ($\Delta \delta$ $>5 \mathrm{ppm}$) being observed for 'syn'- and small values ($\Delta \delta<1 \mathrm{ppm}$) for 'anti'-adducts. Furthermore, a γ effect is expected between an 'endo'-orientated $\mathrm{CH}_{3}-\mathrm{C}(2)$ group and the bridgehead-atoms of the 2 -oxapyrrolizidine moiety. One indeed finds a shielding of 3 ppm for the $\mathrm{CH}_{3}-\mathrm{C}(2)$ signals of $\mathbf{9 b}$ and $\mathbf{1 1 b}$ ($\mathbf{9 b}$ and $\mathbf{1 1 b}: 22.9$ and 21.6 ppm, resp.; 9a and 11a: 25.0 and 25.4 ppm , resp.). The 'endo'-position of the $\mathrm{CH}_{3}-\mathrm{C}(2)$ group is expected to cause a large chemical-shift difference for the $\mathrm{H}_{2}(\mathrm{C} 3)$ signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (cf. [2]). Indeed, $\mathbf{9 b}(\Delta \delta=1.38$ $\mathrm{ppm})$ and 11b $(\Delta \delta=0.74 \mathrm{ppm})$ exhibit large differences and $15(A \delta=0.16 \mathrm{ppm}), 9 \mathrm{a}(\Delta \delta=0.19 \mathrm{ppm})$, and 11 a ($\Delta \delta=0.29 \mathrm{ppm}$) small differences. Thus, the adducts possessing an 'endo'- $\mathbf{(9 b}, \mathbf{1 1 b}$) and 'exo' $-\mathrm{CH}_{3}$ group ($\mathbf{9 a}$ and 11a) are easily discerned.
4. 1,3-Dipolar Addition of Methyl Acrylate. - The addition of methyl acrylate to 7 yielded a more complex mixture (87%) than the addition of methyl methacrylate. Several fractions of the crude product were obtained by column chromatography and analyzed by ${ }^{1}$ H-NMR spectroscopy (see Exper. Part and Table 1). Pure adducts (10a, 10b, 12a, and 13b) were isolated by repeated column chromatography and by HPLC. Two minor adducts (14a and 13a) could not be separated and were analyzed as a 9:1 mixture.

Since the MS show that all products are isomers, the addition is not completely regioselective. The 2 -substituted adducts 10a, 10b, and 12a (${ }^{1} \mathrm{H}-\mathrm{NMR}: \mathrm{H}-\mathrm{C}(2)$ above 4.5 ppm and $2 \mathrm{H}-\mathrm{C}(3)$ below $3 \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$: doublet of $\mathrm{C}(2)$ above 70 ppm and triplet of $\mathrm{C}(3)$ below 45 ppm) are easily recognized (see Tables 2-4). The 3-substituted 2-oxapyrrolizidines 13a, 13b, and 14a exhibit the expected chemical shifts in their NMR spectra: the $2 \mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}(3)$ signals occur above 3 ppm , the triplet of $\mathrm{C}(2)$ above 65 ppm , and the doublet of $\mathrm{C}(3)$ below 56 ppm .

Analysis of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra (δ of $\mathrm{H}-\mathrm{C}(8), \mathrm{C}(7)$ and $\mathrm{C}(8), \Delta \delta$ between $\mathrm{C}(5)$ and $\left.\mathrm{C}(6)\right)$ allows the unambigous attribution of 'syn'- (12a, 14a) and 'anti'-adducts (10a, 10b, 13a, 13b). It remained to assign the configuration at $\mathrm{C}(2)$ (or $\mathrm{C}(3)$). The absence of the CH_{3} group at $\mathrm{C}(2)$ (no γ effect) makes the structure elucidation of 10a, 10b, and $\mathbf{1 2 a}$ difficult. In these compounds, the COOCH_{3} group should prefer a pseudoequatorial position. Therefore, $\Delta \delta$ of the $2 \mathrm{H}-\mathrm{C}(3)$ signals of the 'exo'-adducts should be smaller than $\Delta \delta$ observed for the methacrylate adducts possessing an 'exo'- COOCH_{3} group, but still larger than the ones of the acrylate 'endo'-adducts. Thus, 10b ($\Delta \delta=0.56 \mathrm{ppm}$) is an 'exo'-, and 10a and 12a ($\Delta \delta=0.29$ and 0.09 ppm , resp.) are 'endo'-adducts. Assuming a pseudoequatorial position of the COOCH_{3} group, examination of models shows that the coupling constants $J(2,3), J\left(2,3^{\prime}\right), J(3,4)$, and $J\left(3^{\prime}, 4\right)$ (see Table 3) are only compatible with the proposed configurational assignment. The same coupling constants of 12a are only compatible with the 'endo'-adduct. The 'exo'-adduct $\mathbf{1 2 b}$ having a pseudoequatorial COOCH_{3} group must exhibit at least one small trans-coupling ($\leqslant 4 \mathrm{~Hz}$). However, this isomer was not detected in the mixture of cycloadducts. The configuration at $\mathrm{C}(3)$ of the 3 -substituted 2 -oxapyrrolizidines 13a, 13b, and 14a cannot be deduced from spectroscopic data, because the vieinal coupling constants $J(3,4)$ are too similar to each other. The assignment is tentative and may be reversed.

In the NMR spectra of the phosphonate 8 , the chemical shifts of $\mathrm{H}-\mathrm{C}(8)(4.83 \mathrm{ppm}), \mathrm{C}(7)(105.5 \mathrm{ppm})$, and $\mathrm{C}(8)(84.7 \mathrm{ppm})$ are in good agreement with those of the 'syn' 1,3 -dipolar cycloadducts suggesting a trans-configuration of the phosphoryl and the OH group in solution as it was found in the crystalline state.
5. Discussion. - The complete diastereoselectivity in the addition of the phosphite anion to 7 compares to one of about 90% for the addition to a conformationally undefined nitrone [1]. The diastereoselectivity observed for the induction at $\mathrm{C}(2)(\mathrm{C}(5)$ of an isoxazolidine) is 81% for the cycloaddition of methyl methacrylate to 7 as compared to a d.e. of 75% for the addition to a similarly substituted, but conformationally undefined nitrone, both in favour of a (S)-configuration [2]. The corresponding diastereoselectivity for the cycloaddition of methyl acrylate to 7 is 42% and must be compared with the value of 28% (both in favour of a (R)-configuration) for the addition to a conformationally undefined nitrone having a lower degree of substitution (a factor expected to lead to lower diastereoselectivities) [2]. The qualitative and quantitative
agreement between the behaviour of 7 and its conformationally undefined analogs is therefore good.

In agreement with the proposed hypothesis [1] [2], the same mode of approach for the phosphite anion and for methyl methacrylate is observed and the 'anti' approach of methyl methacrylate goes along with the 'exo'-orientation of the CH_{3} group, confirming the proposed, reactive conformation of the nitrone. Against the expectation, the approach from the side opposite to $\mathrm{C}(4)-\mathrm{O}$ bond of 7 is preferred. Thus, either the stereoelectronic preference for an antiperiplanar as opposed to a synperiplanar arrangement of the developing lone pair and polar bond in the transition state is intrinsically weak and easily overridden by other factors, or these other factors are stronger than anticipated, or then there is a stereoelectronic preference for 'anti' attack.

In the absence of pertinent calculations, a discussion of these possibilities is difficult. Certainly, one may advance charge-dipol repulsions favouring an 'anti' attack of a charged nucleophile. One must, however, also explain that the ratio of 'anti' vs. 'syn' attack in the addition to methyl methacrylate is $85: 15$ and for the addition of methyl acrylate $59: 41$, in favour of the 'syn' attack. This may be due to a stronger interaction of the nitrone HOMO with the LUMO of the acrylate than with the LUMO of the methacrylate [4] [5]. The lower regioselectivity found in the cycloaddition of acrylate (see also [6] [7]) corresponds well with this explanation, which implies that HOMO-controlled cycloadditions would favour a 'syn' attack. This may be compared to the opposite face selectivity in Diels-Alder additions (with normal electron demand) of alkoxyalkyl-substituted dienes and dienophiles: a preferred 'anti' mode of addition of alkoxyalkyl-substituted dienophiles has been implied [8], a case analogous to a LUMO-controlled cycloaddition of a N-alkoxyalkyl-nitrone. This raises the question as to preferred 'syn' or 'anti' approach to C-alkoxyalkyl- [9] [10] and C-acyloxyalkyl-nitrones. A (weak) evidence may be deduced from the results of Uskokovic and coworkers [11]. In the cycloaddition of (Z ?)- N-benzyl- C-acetoxyalkyl-nitrones, 4 diastereoisomers were found, arising from a combination of 'syn' vs. 'anti' approach of methyl methacrylate and the 'exo' vs. 'endo' orientation of its CH_{3} group. Whilst one type of face selectivity went along with an 'exo'/'endo' ratio of about $92: 8$, the other type of face selectivity was accompagnied by an approximately $1: 1$ 'endo'/'exo' ratio. This is in parallel with our results where the 'exo'/ 'endo' ratio is $98: 2$ for the 'ant i '-addition product and $1: 1$ for the 'syn'-addition product, indicating that the type of face selectivity favouring the $92: 8$ 'exo'/'endo' ratio (major products) corresponds to an 'anti' type of addition. If it should prove correct that also C-alkoxy- or C-acyloxyalkyl-substituted nitrones show the same face preference as N-alkoxyalkyl-nitrones do, one may question the importance of a lone-pair polar bond interaction in the transition state. This would be in keeping with an early transition state [12][13] in 1,3-dipolar cycloadditions.

Experimental Part

General. Sec [14] [15], except as noted below. Methyl acrylate and methacrylate, N, N-carbonyldiimidazole (all purum) and PrOH (puriss.) were obtained from Fluka, DIBAH 20 H from Schering. $\mathrm{Li}(t-\mathrm{BuO}$) was sublimed immediately before use. NMR spectra were measured with a Varian-XL-100 spectrometer $\left({ }^{13} \mathrm{C}-\mathrm{NMR}(25 \mathrm{MHz})\right.$), Varian-XL-200 spectrometer (${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}\right.$), ${ }^{31} \mathrm{P}-\mathrm{NMR}$ (80 MHz)), or Bruker $A M-400$ spectrometer $\left({ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})\right) .{ }^{31} \mathrm{P}$-NMR spectra are reported to $\mathrm{H}_{3} \mathrm{PO}_{4}$ as external referencc. For anal. HPLC a Zorbax-Sil column ($4.6 \times 250 \mathrm{~mm}$) on a Kontron apparatus (LC pump 410) was used and for prep. HPLC a Zorbax-Sil column $(21.5 \times 250 \mathrm{~mm})$ on a Du Pont 8800 apparatus with a Du Pont UV spectrophotometer or a Knauer differential refractometer. FC: Flash chromatography.

2,3-Dideoxy-5,6:8,9-di-O-isopropylidene- α-D-manno-4-nonosulo-1,4:4,7-difuranose (4). To a cooled soln. $\left(-75^{\circ}, \mathrm{CO}_{2} / \mathrm{i}-\mathrm{PrOH}\right)$ of $3(3.038 \mathrm{~g}, 9.67 \mathrm{mmol})[3]$ in dry $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$, a soln. of DIBAH $20 \mathrm{H}(10.5 \mathrm{ml}, 12.6 \mathrm{mmol})$ was added through a syringe within 5 min . The clear soln. was stirred at -75° for 30 min . After addition of MeOH (1 ml), Celite (1 g), and decolourizing charcoal (1 g), the mixture was allowed to warm to r.t. After addition of 2 N NaHCO_{3} and further stirring at r.t. for 15 min , the mixture was filtered through a pad of Celite. The residue was washed twice with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were diluted with AcOEt , washed with $\mathrm{H}_{2} \mathrm{O}(3 \times)$, dried, and concentrated i.v. Crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $1: 5(60 \mathrm{ml})$ afforded 1.64 g of 4 (m.p. $71-72^{\circ}$) . FC (100 g , hexane/AcOEt $2: 1$) [16] of the mother liquor gave $221 \mathrm{mg}(7 \%)$ of $3,26 \mathrm{mg}(1 \%)$ of 2,3:5,6-di- O-isopropylidene-d-mannose, and further 1.042 g of 4 (total yield of $4: 2.682 \mathrm{~g}, 88 \%$). For anal. a sample was dried for 2 h at 10^{-3} Torr. M.p. $72^{\circ}, R_{\mathrm{f}} 0.30$ (hexane $/ \mathrm{AcOE} 1: 1$), $[\alpha]_{\mathrm{D}}^{25}=+46.5^{\circ} \rightarrow+39.9^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): $3600 \mathrm{~m}, 3450 w$ (br.), $3030 w, 2990 s, 2950 \mathrm{~m}, 2940 \mathrm{~m}, 2890 w, 1725 w, 1480 \mathrm{~m}, 1455 m, 1440 w, 1405 w, 1380 s$, $1370 s, 1345 w, 1160 s, 1110 m, 1070 s, 1030 s, 985 s, 945 m, 925 m, 885 m, 865 m, 840 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.8$ $(s, 0.03 \mathrm{H}, \mathrm{CHO}) ; 5.6-5.46(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 4.82(d d, J=6.0,3.8, \mathrm{H}-\mathrm{C}(6)) ; 4.62(d, J=6.0,0.45 \mathrm{H})$ and $4.49(d$, $J=6.0,0.55 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.43-4.25(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 4.15-3.85(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7), 2 \mathrm{H}-\mathrm{C}(9)) ; 2.8-1.5(\mathrm{~m}, 5 \mathrm{H}) ; 1.46(\mathrm{~s}$, $\left.\left.\mathrm{CH}_{3}\right) ; 1.45\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 1.38\left(s, \mathrm{CH}_{3}\right) ; 1.34\left(s, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{3}\right): 115.18(s), 114.92(s) ; 112.26(s)$, $112.11(\mathrm{~s}) ; 108.69(\mathrm{~s}) ; 99.91(\mathrm{~d}), 98.93(\mathrm{~d}) ; 85.68(\mathrm{~d}), 84.68(\mathrm{~d}) ; 79.66(\mathrm{~d}), 79.59(\mathrm{~d}) ; 79.21(\mathrm{~d}), 78.92(\mathrm{~d}) ; 72.91(\mathrm{~d})$; $66.52(t), 66.42(t) ; 32.28(t), 31.39(t) ; 30.60(t), 29.67(t) ; 28.86(q), 26.61(q) ; 25.73(q) ; 25.04(q) ; 24.67(q), 24.50$ (q). Cl-MS: $317\left(M^{\dagger}+1\right), 299\left(M^{+}-\mathrm{CH}_{3}\right)$. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{7}(316.35)$: C 56.95 , H 7.65 ; found: C 56.88 , H 7.76 .

Treatment of 4 with N -Methylhydroxylamine. To a freshly prepared soln. of $\mathrm{NaOMe}(920 \mathrm{mg}(47.7 \mathrm{mmol})$ of Na in 40 ml of MeOH), N-methylhydroxylamine hydrochloride ($3.34 \mathrm{~g}, 47.7 \mathrm{mmol}$) was added, and the resulting mixture was stirred at 70° for 15 min . After addition of a soln. of $4(800 \mathrm{mg}, 2.53 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$, the mixture was stirred at 70° for 15 min . After 5 min , TLC revealed that $\mathbf{4}$ was completely transformed into 5 . After addition of $\mathrm{PrOH}(80 \mathrm{ml})$, the temp. was raised to 110° and McOH was distilled off. Molecular sieves $3 \AA(8 \mathrm{~g})$ were added. After stirring for 20 h at 110°, the mixture was allowed to cool to r.t. Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$, filtration through a pad of Celite, concentration of the filtrate i.v., and FC (25 g of silica gel; 300 ml of hexane/AcOEt $2: 1,300 \mathrm{ml}$ of hexane/AcOEt $1: 1$, and 300 ml of AcOEt) afforded a mixture $5 / 6 / 7(539 \mathrm{mg}$, ca. 60%). With $\mathrm{AcOEt} / \mathrm{MeOH} 9: 1(500 \mathrm{ml})$ as eluent $335 \mathrm{mg}(43 \%)$ of 7 were obtained as a colourless syrup $\left.{ }^{4}\right)$.

1,4-Anhydro-1-deoxo-2,3-dideoxy-1-imino-5,6:8,9-di-O-isopropylidene- α-D-manno-4-nonosulo-4,7-furanose N oxide (7). $R_{\mathrm{f}} 0.21\left(\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right) ;[\alpha]_{\mathrm{D}}^{25}=+42.2^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 2990 \mathrm{~m}, 2940 \mathrm{~m}, 2880 \mathrm{w}, 1580 \mathrm{~m}$, $1450 \mathrm{w}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1350 \mathrm{w}, 1240 \mathrm{~s}, 1175 \mathrm{~m}, 1160 \mathrm{~m}, 1100 \mathrm{~s}, 1065 \mathrm{~s}, 1035 \mathrm{~m}, 1010 \mathrm{~m}, 995 \mathrm{~m}, 970 \mathrm{~m}, 940 \mathrm{w}, 920 \mathrm{~m}, 885 \mathrm{w}$, $865 w, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.85$ (br. $s, w_{1 / 2} \approx 6, \mathrm{H}-\mathrm{C}(1)$); 5.12-4.98 ($\left.\mathrm{m}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)\right) ; 4.80$ $(d d, J=8.0,3.5, \mathrm{H}-\mathrm{C}(7)) ; 4.28(d t, J=8.0,5.5, \mathrm{H}-\mathrm{C}(8)) ; 4.02(d d, J=8.7,5.5, \mathrm{H}-\mathrm{C}(9)) ; 3.99(d d, J=8.7,5.5$, $\mathrm{H}-\mathrm{C}(9)) ; 2.85-2.50(m, 2 \mathrm{H}) ; 2.40-2.05(m, 2 \mathrm{H}) ; 1.48\left(s, \mathrm{CH}_{3}\right) ; 1.43\left(s, \mathrm{CH}_{3}\right) ; 1.38\left(s, \mathrm{CH}_{3}\right) ; 1.37\left(s, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 134.49(d) ; 112.61(s) ; 109.56(s) ; 108.85(s) ; 83.06(2 d) ; 80.78(d) ; 72.99(d) ; 66.45$ $(f) ; 26.53(q) ; 26.11(t) ; 25.77(q) ; 25.10(q) ; 24.83(t) ; 24.33(q) . \mathrm{MS}: 313\left(7, M^{ \pm}\right), 298(42), 282(15), 255(6), 238$ (34), 197 (10), 186(16), 172 (15), $155(15), 154(30), 141(13), 139(13), 138(32), 127(12), 126(15), 125(11), 114(13)$, $113(17), 110(14), 109(12), 108(12), 101(100), 100(30), 99(13), 98(14), 97(18), 96(11), 94(12), 85(24), 84(33), 83$ (15), 82 (20), 81 (18), 80 (12), 73 (15), 72 (23), 71 (27), 69 (24), 68 (20), 67 (12), 59 (55), 57 (20), 55 (37), 54 (12), 49 (12), 43 (95), 42 (18), 41 (45), 39 (18).

A sample of the mixture 5/6/7 was purified by flash chromatography (hexane/AcOEt 1:1) yielding pure 5 (crystallized from $\mathrm{Et}_{2} \mathrm{O}$ /hexane) and slightly impure 6 as an oil.
${ }^{3}$) In soln., 4 mainly consisted of 2 hemiacetals in the ratio of ca. 11:9. Signals of the predominant isomer are indicated in italics. Signals of other isomers (low intensities) are not listed.
${ }^{4}$) The yield of 7 varied from 20 to 50%. The transformation of 6 into 7 occurred during the reaction and during chromatography. More 7 was obtained by repeating the reaction using the mixture 5/6/7 as starting material.

2,3-Dideoxy-5,6:8,9-di-O-isopropylidene-D-manno-4-nonosulo-4,7-furanose 1-Oxime (5). M.p. 109 ; $R_{\mathrm{f}} 0.22$ (hexane/AcOEt 1:1). IR (CHCl_{3}): $3590 \mathrm{~m}, 3390 \mathrm{~m}$ (br.), 2990m, 2940m, 2900w, $1450 \mathrm{w}, 1380 \mathrm{~s}$, $1370 \mathrm{~s}, 1320 \mathrm{w}, 1160 \mathrm{~s}$, $1110 \mathrm{~m}, 1065 \mathrm{~s}, 970 \mathrm{~m}, 890 \mathrm{~m}, 860 \mathrm{~m}, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.51(t, J=5.6,0.34 \mathrm{H})$ and $6.95-6.8$ (br, s, $0.66 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.84(d d, J=5.9,3,8, \mathrm{H}-\mathrm{C}(6)) ; 4.49(d, J=5.9,0.66 \mathrm{H})$ and $4.46(d, J=5.9,0.34 \mathrm{H}, \mathrm{H}-\mathrm{C}(5))$; $4.39(t d, J=6.5,5.5, \mathrm{H}-\mathrm{C}(8)) ; 4.20(d d, J=6.5,3.8,0.66 \mathrm{H})$ and $4.14(d d, J=6.5,3.8,0.34 \mathrm{H}, \mathrm{H}-\mathrm{C}(7)) ; 4.07(d d$, $J=8.6,6.5, \mathrm{H}-\mathrm{C}(9)) ; 3.99(d d, J=8.6,5.5, \mathrm{H}-\mathrm{C}(9)) ; 2.75-1.8\left(m, 5 \mathrm{H}, 1 \mathrm{H}\right.$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 1.47(s$, $\left.\left.\mathrm{CH}_{3}\right) ; 1.44\left(s, \mathrm{CH}_{3}\right) ; 1.38\left(s, \mathrm{CH}_{3}\right) ; 1.33\left(s, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{5}\right): 151.27(d) ; 112.33(s) ; 108.66(s) ;$ $106.08(s), 105.96(s) ; 84.59(d) ; 79.93(d) ; 78.69(d), 78.55(d) ; 73.16(d) ; 66.20(t) ; 31.66(t), 31.31(t) ; 31.62(t)$, $26.76(t) ; 26.55(q) ; 25.70(q) ; 25.12(q) ; 24.27(q)$. MS: $331\left(0.5, M^{\dagger}\right), 316(13), 258(4), 256(4), 227$ (7), 210 (7), $142(18), 141(12), 137(14), 111(12), 101(62), 100(40) ; 99(18), 98(14), 97(14), 95(11), 91(26), 85(14), 84(16), 83$ (14), 82 (12), 81 (19), 73 (17); 72 (22), 71 (15), 70 (11), 69 (20), 68 (14), 67 (12), 59 (42), 57 (35), 56 (15), 55 (33), 45 (11), 44 (13), 43 (100), 42 (15), 41 (54), 39 (11). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{7}$ (331.36): C 54.37, H7.60, N 4.22 ; found: C 54.27, H 7.42, N 4.15.

2,3-Dideoxy-5,6:8,9-di-O-isopropylidene-D-manno-4-nonosulose 1,4-Dioxime (6). $R_{\mathrm{f}} 0.09$ (hexane/AcOEt $1: 1$). IR (CHCl_{3}): $3580 \mathrm{~m}, 3340 \mathrm{~m}$ (br.), 2990s, $2930 \mathrm{~s}, 2900 \mathrm{~m}, 1450 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1160 \mathrm{~m}, 1100 \mathrm{~m}, 1065 \mathrm{~s}, 970 \mathrm{~m}$, $885 m, 840 \mathrm{~m} .{ }^{\mathrm{i}} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.58-7.34(\mathrm{~m}, 0.6 \mathrm{H})$ and $6.9-6.76(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)) ; 4.76(d, J=8$, $0.4 \mathrm{H}) ; 4.25-3.8(\mathrm{~m}, 3 \mathrm{H}) ; 3.8-3.4(\mathrm{~m}, 2.6 \mathrm{H}) ; 2.9-1.8(\mathrm{~m}, 5 \mathrm{H}) ; 1.44\left(s, \mathrm{CH}_{3}\right) ; 1.43\left(s, \mathrm{CH}_{3}\right) ; 1.42\left(s, \mathrm{CH}_{3}\right) ; 1.38(s$, CH_{3}).

Dibenzyl [(1R)-1,4-Anhydro-1,2,3-trideoxy-1-C-hydroxyamino-5,6:8,9-di-O-isopropylidene- α - D -manno-4-nonulo-4,7-furanos-1-yljphosphonate (8). $\mathrm{Li}(t-\mathrm{BuO})(40 \mathrm{mg}, 5 \mathrm{mmol})$ was added to a cooled (-70°) soln. of dibenzyl phosphite ($165 \mathrm{mg}, 0.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, and a few minutes later, a soln. of $7(120 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$. After stirring at -70° for 2 h , the mixture was allowed to warm to -20° within 2 h . It was poured onto ice, washed twice with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent, followed by FC (30 g of silica gel, hexane/AcOEt $1: 1 \rightarrow$ hexane/AcOEt $1: 3$) yielded $190 \mathrm{mg}(86 \%)$ of $8($ d.e. $c a .100 \%$). Purification by prep. HPLC (hexane/ $\mathrm{CH}_{3} \mathrm{OH} 98: 2 ; t_{\mathrm{R}} 19.4 \mathrm{~min}$) gave pure 8 as a colourless oil, which crystallized from pentane. For X-ray analysis, a sample was crystallized from pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ according to the liquid-diffusion method [17]. M.p. $122-122.5^{\circ} ; R_{\mathrm{r}} 0.40(\mathrm{AcOEt}) ;[\alpha]_{\mathrm{D}}^{25}=+8.3^{\circ}\left(c=1, \mathrm{CHCl}_{3}\right)$. IR (KBr): $3290 \mathrm{~m}, 3000 \mathrm{~m}, 2960 \mathrm{~m}, 2940 \mathrm{~m}, 1460 \mathrm{~m}$, $1380 \mathrm{~m}, 1370 \mathrm{~m}, 1260 \mathrm{~m}, 1205 \mathrm{~s}$, $1180 \mathrm{~m}, 1125 \mathrm{w}, 1105 \mathrm{w}, 1070 \mathrm{~s}, 1025 s, 1000 \mathrm{~s}, 970 \mathrm{~s}, 920 \mathrm{w}, 910 w, 875 m, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{and}$ ${ }^{13} \mathrm{C}$-NMR: Tables 2-4. ${ }^{31} \mathrm{P}$-NMR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 28.22. MS: $575\left(1, M^{+}\right.$), $560(3), 542(1), 474$ (3), 404 (8), 346 (11), 298 (7), 297 (7), 282 (9), 256 (11), 171 (30), 115 (10), 108 (23), 107 (29), 105 (29), 101 (47), 92 (22), 91 (100), 79 (35), 77 (26), 65 (20), 59 (26), 43 (99), 41 (33). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{9} \mathrm{P}$ (575.59): C 60.51, H 6.65, N 2.43, P 5.38; found: C $60.55, \mathrm{H} 6.90, \mathrm{~N} 2.35, \mathrm{P} 5.20$.

Reaction of 7 with Methyl Methacrylate. A soln. of $7(219 \mathrm{mg}, 0.7 \mathrm{mmol})$ and methyl methacrylate (1 ml) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was stirred at 70° for 30 min . Evaporation of the solvent and $\mathrm{CC}(30 \mathrm{~g}$ of silica gel, hexane/AcOEt 3:1) afforded $200 \mathrm{mg}(69 \%)$ of a faster moving Fraction $A\left(R_{\mathrm{f}} 0.47\right.$ (hexane/AcOEt 1:1)) and $35 \mathrm{mg}(12 \%)$ of a slower moving Fraction $B\left(R_{\mathrm{f}} 0.31\right)$. HPLC showed that the Fraction A was a mixture $9 \mathbf{9} / \mathbf{9 b} 49: 1$. By crystallization and a second CC, 9 a and 9 b were obtained in pure form: 9 a as fine needles and 9 b as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy of the Fraction B revealed a mixture 11a/11b 1:1. Prep. HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98.5: 1.5, t_{\mathrm{R}} 18.1 \mathrm{~min}\right.$ for $11 \mathbf{a}$ and 16.3 min for 11 b) afforded 11 a and 11 b , each as a crystalline compound.

Methyl 2, N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di-O-isopropylidene-2-C-methyl α-D-manno-L-erythro-7-dodeculo-7,10-furanosonate (9a). M.p. $66^{\circ} ; R_{\mathrm{f}} 0.47$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=$ $-48.8^{\circ}\left(c=0.7, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): 3030 w, 2990 s, 2960 m, 2940 m, 2890 w, 1740 s, 1455 m, 1435 w, 1305 m, 1165 m$, 1150 m , (sh), $1115 \mathrm{~s}, 1070 \mathrm{~s}, 1045 s, 990 w(\mathrm{sh}), 975 m, 940 w, 895 m, 885 w(\mathrm{sh}), 860 \mathrm{~m}, 845 m, 820 w .{ }^{1} \mathrm{H}-\mathrm{and}{ }^{13} \mathrm{C}-\mathrm{NMR}$: Tables 2-4. MS: 413 (1.5, M^{\dagger}), 398 (4), 354 (1), 340 (2), 312 (2), 200 (29), 199 (12), 144 (11), 141 (11), 140 (12), 119 (12), 101 (17), $100(22), 99(11), 98(10), 84(15), 83(8), 81(13), 71(8), 69(16), 68(15), 67(8), 59(17), 57(10), 55(22)$, 53 (8), 43 (100), 42 (11), 41 (42), 39 (17). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{8}$ (413.47): C 58.10, H 7.56, N 3.39; found: C 58.35, H 7.57, N 3.60.

Methyl 2,N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di-O-isopropylidene-2-C-methyl-α-D-manno-L-threo-7-dodeculo-7,10-furanosonate (9b) , $R_{f} 0.50$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=-31.9^{\circ}(c=0.4$, CHCl_{3}). IR $\left(\mathrm{CHCl}_{3}\right): 2990 s, 2950 s, 2930 s, 2880 \mathrm{~m}, 1735 \mathrm{~s}, 1455 \mathrm{~m}, 1435 m, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1300 \mathrm{~m}, 1260 \mathrm{~m}, 1160 \mathrm{~s}, 1150 \mathrm{~s}$, (sh), $1140 \mathrm{~s}, 1125 \mathrm{~m}, 1100 \mathrm{~m}, 1070 \mathrm{~s}, 1050 \mathrm{~s}, 990 \mathrm{~m}, 970 \mathrm{~m}, 940 \mathrm{~m}, 890 \mathrm{~m}, 870 \mathrm{~m}, 855 \mathrm{~m}, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Tables 2-4. MS: $413\left(1, M^{+}\right), 398(8), 354(2), 340(1), 312(6), 247(4), 200(26), 199(9), 191$ (7), 144 (7), 141 (11), 140 (12),

[^5]$101(21), 100(18), 99(11), 98(14), 97(9), 85(8), 84(13), 81(11), 72(7), 69(16), 68(11), 59(17), 57(11), 55(12), 53$ (7), 43 (100), 42 (9), 41 (48), 39 (21).

Methyl 2,N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di-O-isopropylidene-2-C-methyl-α-D-manno-D-crythro-7-dodeculo-7.10-furanosonate (11a). M.p. $111^{\circ}, R_{f} 0.31$ (hexane/AcOEt $1: 1$); $[\alpha]_{\mathrm{D}}^{25}=+71.9^{\circ}$ $\left(c=0.6, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 2990 \mathrm{~s}, 2955 \mathrm{~s}, 2935 \mathrm{~s}, 2890 \mathrm{~m}, 2860 \mathrm{w}, 1735 \mathrm{~s}, 1455 \mathrm{~m}, 1440 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1320 \mathrm{~m}$, $1305 m, 1255 s, 1165 s, 1135 s, 1090 s, 1070 s, 985 m, 975 m, 890 m, 865 m, 840 m$. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR: Tables 2 4. MS: 413 $\left(3, M^{+}\right), 398(4), 355(2), 354(2), 340(4), 313(2), 312(2), 212(3), 201(5), 200(51), 199(23), 144(16), 141(13), 140$ $(21), 137(6), 126(7), 101(22), 100(33), 99(14), 98(14), 97(7), 85(9), 84(14), 81(13), 72(10), 71(8), 69(16), 68(12)$, 59 (19), 55 (14), 44 (9), 43 (100), 42 (8), 41 (33), 39 (14). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{8}(413.47)$: C 58.10, H7.56, N 3.39 ; found: C 58.08, H 7.55, N 3.51.

Methyl 2,N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8.9:11,12-di-O-isopropylidene-2-C-methyl-α-D-manno-D-threo-7-dodeculo-7,10-furanosonate (11b). M.p. $114^{\circ} ; R_{\mathrm{f}} 0.31$ (hexane/AcOEt $1: 1$); $[\alpha]_{\mathrm{D}}^{25}=+97.1^{\circ}$ $\left(c=0.6, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 2990 s, 2950 \mathrm{~m}, 2940 \mathrm{~m}, 2910 w$, (sh), $2880 w, 1735 \mathrm{~s}, 1480 \mathrm{w}, 1455 \mathrm{~m}, 1435 \mathrm{~m}, 1380 \mathrm{~s}$, $1370 \mathrm{~s}, 1325 \mathrm{w}, 1290 \mathrm{~m}, 1265 \mathrm{~m}, 1190 \mathrm{~s}, 1165 \mathrm{~s}, 1080 \mathrm{~s}, 1070 \mathrm{~s}, 995 \mathrm{~m}, 975 \mathrm{~m}, 955 \mathrm{w}, 940 \mathrm{~m}$ (sh), $935 \mathrm{~m}, 905 \mathrm{~m}, 890 \mathrm{~m}, 865 \mathrm{~m}$, $840 \mathrm{~m} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR: Tables 2-4. MS: $413\left(3, \mathrm{M}^{+}\right), 398(4), 355(2), 354(2), 340(4), 312(7), 296(3), 212(4)$, 201 (6), $200(45), 199(11), 141$ (13), $140(13), 137(7), 119$ (16), 101 (20), $100(29), 99(16), 98(27), 97(14), 85(8), 84$ (16), 83 (7), 81 (16), 71 (7), 69 (11), 68 (14), 59 (15), 55 (19), 43 (100), 42 (9), 41 (30), 39 (11). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{8}(413.47)$: C $58.10, \mathrm{H} 7.56$, N 3.39 ; found: C $58.31, \mathrm{H} 7.29, \mathrm{~N} 3.58$.

Reaction of 7 with Methyl Acrylate. A soln. of $7(53 \mathrm{mg}, 0.17 \mathrm{mmol})$ and methyl acrylate ((ml) in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$ was stirred at 70° for 30 min . Evaporation of the solvent and CC (30 g of silica gel, hexane/AcOEt 1:1) afforded 5.5 mg of a Fraction $A\left(R_{\mathrm{f}} 0.43\right.$ (hexane/AcOEt 1:1)), 12.5 mg of a Fraction $B\left(R_{\Gamma} 0.36\right), 15 \mathrm{mg}$ of a Fraction $C\left(R_{\mathrm{f}} 0.36\right.$ and 0.31), and 25.5 mg of a Fraction $D\left(R_{\mathrm{f}} 0.31\right)$. Total yield of adducts: $58.5 \mathrm{mg}(87 \%)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed that A was a mixture 13a/13b/14a 13:9:65, B a mixture 10a/10b $65: 35, C$ a mixture 10a/10b/12a 26:9:65, and D a mixture 10b/12a (15:85 (see also Table 1). CC (35 g of silica gel, hexane/AcOEt 4:1) of the combined Fractions C and D afforded pure 12a and 10a/10b. Prep. $\mathrm{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98.5: 1,5, t_{\mathrm{R}} 13.5 \mathrm{~min}\right.$ for 10 a and 15.3 min for 10b) of this mixture, combined with Fraction B, gave pure 10 a and 10b. Prep. HPLC of Fraction A (hexane/AcOEt $3: 1, t_{\mathrm{R}} 8.3 \mathrm{~min}$ for $\mathbf{1 3 a} / \mathbf{1 4 a}$ and 11.1 min for $\mathbf{1 3 b}$) afforded pure $\mathbf{1 3 b}$ and a mixture of $\mathbf{1 4 a} / \mathbf{1 3 a} 9: 1$.

Methyl 2, N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di-O-isopropylidene- α - D-manno-L-erythro-7-dodeculo-7,10-furanosonate (10a). $R_{\mathrm{f}} 0.36$ (hexane/AcOEt $1: 1$); $[\alpha]_{\mathrm{D}}^{25}=-23.6^{\circ}\left(c=0.8, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3030 w, 2990 s, 2950 \mathrm{~m}, 2900 w(\mathrm{sh}), 2880 w, 1750 \mathrm{~s}, 1730 \mathrm{~s}, 1460 \mathrm{~m}$ (sh), $1450 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1265 \mathrm{~m}, 1160 \mathrm{~s}$, $1135 m, 1115 w, 1065 s, 1045 s, 975 m, 950 w, 930 w, 885 m, 865 m, 840 m .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR: Tables 2-4. MS: 399 (2), 385 (8), 384 (34), 340 (18), 298 (22), 282 (10), 212 (10), 198 (10), 187 (12), 186 (100), 185 (27), 181 (8), 166 (8), 154 (10), 152 (9), 141 (39), 138 (9), 137 (12), $130(32), 126(42), 124(9), 122(8), 113(10), 110(9), 108(13), 101(42), 100$ (24), 99 (23), $98(27), 97(18), 96(8), 95(10), 94(9), 85(19), 84(18), 83(13), 82(13), 81(26), 80(12), 73(11), 72(18)$, 71 (12), 70 (22), 69 (17), 68 (25), 67 (9), 59 (34), 57 (12), 55 (30), 53 (13), 43 (96), 42 (18), 41 (33), 39 (17).

Methyl 2, N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di-O-isopropylidene- α-D-manno-L-threo-7-dodeculo-7,10-furanosonate (10b). $R_{\mathrm{f}} 0.31$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=-53.6^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3020 \mathrm{w}, 2990 \mathrm{~s}, 2950 \mathrm{~m}, 2940 \mathrm{~m}, 2890 \mathrm{w}, 1745 \mathrm{~s}, 1480 \mathrm{w}, \mathbf{I} 460 \mathrm{~m}, 1455 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1320 \mathrm{w}, 1160 \mathrm{~s}, 1115 \mathrm{~m}$, $1070 \mathrm{~s}, 1045 \mathrm{~s}, 975 \mathrm{~m}, 950 \mathrm{w}, 890 \mathrm{~m}, 860 \mathrm{~m}, 840 \mathrm{~m} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR: Tables 2-4. MS: $399\left(4, \mathrm{M}^{\dagger}\right), 385(5), 384(27)$, $340(10), 326(5), 298(13), 212(8), 187(12), 186(100), 185(46), 141(26), 130(43), 126(18), 110(8), 108(8), 101(33)$, $100(13), 99(18), 98(24), 97(10), 95(8), 85(15), 84(12), 83(9), 81(21), 80(8), 72(12), 71(8), 70(16), 69(12), 68$ (19), 59 (23), 55 (21), 53 (9), 43 (72), 42 (12), 41 (25), 39 (12).

Methyl 2, N:4,7-Dianhydro-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9:11,12-di- O -isopropylidene- α - D -manno-D-erythro-7-dodeculo-7,10-furanosonate (12a). M.p. $77^{\circ} ; R_{\mathrm{f}} 0.31$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=+75.7^{\circ}(\mathrm{c}=1$, $\left.\mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3010 w, 2990 s, 2950 \mathrm{~m}, 2940 \mathrm{~m}, 2890 w, 1740 s, 1475 w, 1455 \mathrm{~m}, 1435 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1325 \mathrm{w}$, $1290 \mathrm{~m}, 1160 \mathrm{~s}, 1125 \mathrm{~m}, 1070 \mathrm{~s}, 1040 \mathrm{~s}, 1015 \mathrm{~m}, 990 \mathrm{~m}, 975 \mathrm{~m}, 920 \mathrm{w}, 905 \mathrm{~m}, 885 \mathrm{~m}, 865 \mathrm{~m}, 840 \mathrm{~m}$. MS: $399\left(4, M^{\dagger}\right), 384$ (18), $340(9), 326(9), 298(20), 272(10), 213(15), 187(10), 186(79), 185(25), 176(24), 154(19), 146(12), 141(28)$, $138(10), 137(10), 130(25), 126(30), 110(14), 101(31), 100(18), 99(23), 98(27), 97(19), 85(15), 84(16), 83(10), 81$ (22), 80 (10), 71 (12), 70 (18), 69 (18), $68(23), 59(29), 53(13), 43(100), 42(24), 41$ (39), 39 (20). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{8}$ (399.44): C $57.13, \mathrm{H} 7.32$, N 3.51 ; found: C 57.12 , H 7.43, N 3.72.

Data of 14a/13a 9:1. $R_{\mathrm{f}} 0.43$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=+80.1\left(c=1, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 2990 s, 2960 s$, $2940 \mathrm{~s}, 2900 \mathrm{~m}(\mathrm{sh}), 1735 \mathrm{~s}, 1455 \mathrm{~m}, 1435 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1350 \mathrm{~m}, 1260 \mathrm{~s}, 1160 \mathrm{~s}, 1120 \mathrm{~s}, 1065 \mathrm{~s}, 1050 \mathrm{~s}, 1020 \mathrm{~m}, 970 \mathrm{~m}$, $960 \mathrm{~m}, 910 \mathrm{~m}, 890 \mathrm{~m}, 865 \mathrm{~m}, 840 \mathrm{~m} .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Tables 2-4.

Methyl 2-C,N:3,6-Dianhydro-2,3,4,5-tetradeoxy-3-C-hydroxyamino-2-C-hydroxymethyl-7,8:10,11-di-O-iso-propylidene- α-D-manno-L-erythro- 6 -undeculo-6.9-furanosonate (13b). $R_{f} 0.43$ (hexane/AcOEt $1: 1$); $[\alpha]_{D}^{55}=+1.6^{\circ}$
$\left(c=0.6, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 2990 \mathrm{~s}, 2950 \mathrm{~m}, 2940 \mathrm{~m}, 2890 \mathrm{~m}, 1740 \mathrm{~s}, 1470 \mathrm{w}, 1465 \mathrm{~m}, 1440 \mathrm{~m}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1325 \mathrm{~m}$, $1175 s, 1160 s, 1070 s, 1050 s, 1005 s, 980 s, 940 w, 925 w, 885 m, 860 m(s h), 840 m .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}:$ Tables 2-4.

Methyl 2, N:4,7-Dianhydro-11,12-O-carbonyl-3,4,5,6-tetradeoxy-4-C-hydroxyamino-8,9-O-isopropylidene-2-C-methyl- α-D-manno-L-erythro-7-dodeculo-7,10-furanosonate (15). A soln. of 9 a ($137 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{AcOH} /$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2: 5(5 \mathrm{ml})$ was stirred at 50° for 20 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and neutralization with $2 \mathrm{~N}_{2} \mathrm{CO}_{3}$, the mixture was extracted with AcOEt. The org. layer was washed with $2 \mathrm{~N} \mathrm{NaHCO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated i.v. The soln. of the oily residue (100 mg) and N, N^{\prime}-carbonyldiimidazole ($60 \mathrm{mg}, 0.37 \mathrm{mmol}$) in dry benzene (5 ml) was stirred at 70° for 30 min . FC (25 g of silica gel, hexane/AcOEt $2: 1 \rightarrow$ AcOEt) afforded $\mathbf{1 5}(75 \mathrm{mg}$, 57%) and an impure, unknown product (78 mg). Crystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane) gave pure 15. M.p. $134^{\circ} ; R_{\mathrm{f}} 0.32$ (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}^{25}=-38.9^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3020 \mathrm{w}, 2990 \mathrm{~m}, 2955 \mathrm{~m}, 2940 \mathrm{~m}, 2880 \mathrm{w}, 2850 \mathrm{w}$, $1800 \mathrm{~s}, 1740 \mathrm{~s}, 1475 \mathrm{w}, 1455 \mathrm{~m}, 1445 \mathrm{~m}, 1435 \mathrm{~m}, 1385 \mathrm{~s}, 1375 \mathrm{~m}, 1315 \mathrm{~m}, 1300 \mathrm{~m}, 1270 \mathrm{~m}, 1170 \mathrm{~s}, 1070 \mathrm{~s}, 1045 \mathrm{~m}, 1000 \mathrm{~m}$, $975 m, 935 m, 900 m, 885 m, 860 w, 820 w .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR: Tables 2-4. MS: $399\left(12, M^{+}\right), 384$ (10), 340 (7), 324 (4), $312(5), 200(49), 199(80), 198(20), 144(82), 140(56), 138(12), 112(12), 109(11), 101(12), 100(41), 99(17), 98(16)$, $97(13), 85(13), 84(44), 82(14), 81(16), 80(10), 71(11), 69(32), 68$ (10), 67 (10), $59(25), 57(11), 56(12), 55(21), 53$ (12), 43 (100), $42(11), 41(52), 39(27)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{9}(399.40)$: C 54.13, H 6.31, N 3.51 ; found: C 54.13, H 6.26, N 3.71 .

REFERENCES

[1] R. Huber, A. Knierzinger, J.-P. Obrecht, A. Vasella, Helv. Chim. Acta 1985, 68, 1730.
[2] A. Vasella, Helv. Chim. Acta 1977, 60, 1273.
[3] B. Aebischer, J.H. Bieri, R. Prewo, A. Vasella, Helv. Chim. Acta 1982, 65, 2251.
[4] J. Sims, K. N. Houk, J. Am. Chem. Soc. 1973, 95, 5798.
[5] A. Padwa, L. Fisera, K. F. Koehler, A. Rodriguez, G. S. K. Wong, J. Org. Chem. 1984, 49, 276.
[6] C. Belzecki, I. Panfil, J. Org. Chem. 1979, 44, 1212.
[7] S. P. Ashburn, R. M. Coates, J. Org. Chem. 1984, 49, 3127.
[8] R. W. Franck, S. Argade, C. S. Subramaniam, D. M. Frechet, Tetrahedron Lett. 1985, $26,3187$.
[9] J. M.J. Tronchet, E. Mihaly, Carbohydr. Res. 1976, 46, 127.
[10] H. Paulsen, M. Budzis, Chem. Ber. 1974, 107, 1998.
[11] P. M. Wovkulich, F. Barcelos, A. D. Batcho, J. F. Sereno, E. G. Baggiolini, B. M. Hennessy, M. R. Uskoković, Tetrahedron 1984, 40, 2283.
[12] G. Swieton, J. von Jouanne, H. Kelm, R. Huisgen, J. Org. Chem. 1983, 48, 1035.
[13] G. Leroy, M. Sana, Tetrahedron 1975, 31, 2091.
[14] B. Bernet, A. Vasella, Helv. Chim. Acta 1984, 67, 1328.
[15] B. M. Aebischer, H. W. Hanssen, A. T. Vasella, W. B. Schweizer, J. Chem. Soc., Perkin Trans. I 1982, 2139.
[16] W.C. Still, A. Mitra, J. Org. Chem. 1978, 43, 2923.
[17] P.G. Jones, Chem. Brit. 1981, 17, 222.

[^0]: ${ }^{1}$) We thank Dr. J.H. Bieri and Mr. R. Prewo for the X-ray analysis of 8 and 15. A more detailed report of these structures will be published later.

[^1]: ${ }^{2}$) 'Syn' and 'anti' refer to the approach from the side of the C(4)-O bond of 7 ('syn') or from the side opposite to it ('anti'). 'endo' or 'exo' refer to the position of a substituent relative to the cis-annulated bicyclic 2-oxapyrrolizidine ring system.

[^2]: a) The same numbering as for $\mathbf{1 0}$ is used. The attribution to the endo- and exo-adducts \mathbf{a} and \mathbf{b}, resp., may be reversed, Spectrum of a mixture 14a/13a $9: 1$. Values of 13a are in brackets.

 An analogous numbering as for 10 is used. Additional signals: $7.38-7.26(m, 10 \mathrm{H}) ; 5.39\left(\mathrm{~s}, \mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 5.12-4.97\left(m, 2 \mathrm{PhCH}_{2}\right)$.
 The geminal proton at lower field is marked with a prime.
) Irradiation at $\mathrm{H}-\mathrm{C}(4)$ allowed the unambiguous attribution of the signals of $\mathrm{H}-\mathrm{C}(3), \mathrm{H}^{\prime}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$, and $\mathrm{H}^{\prime}-\mathrm{C}(5)$.

[^3]: ${ }^{\text {a }}$) All coupling constants were determined by first-order interpretation.
 ${ }^{\text {b }}$ See Table 2, Footnote b
 c) Not distinguishable.

[^4]: ${ }^{4}$) See Table 2, Footnote a
 ${ }^{\text {c }}$) An analogous numbering as for 10 is used. Additional signals: $136.41(s)$ and $136.22(s$, arom. C); 128.54-127.86 (several d, arom. C); 68.16, 68.09, 67.47, 67.40 (all t, $\left.2 \mathrm{PhCH}_{2},{ }^{2} J(\mathrm{C}, \mathrm{P})=6.5 \mathrm{~Hz}\right)$.

 Not visible in the spectrum.
 $1 \quad J(\mathrm{C}, \mathrm{P})=175.6 \mathrm{~Hz}$.
 ${ }^{3} J(\mathrm{C})=6.5 \mathrm{~Hz}$
 ${ }^{3} y(\mathrm{C}, \mathrm{P})=6.5 \mathrm{~Hz}$.
 ${ }^{3} y(\mathrm{C}, \mathrm{P})=19.4 \mathrm{~Hz}$.
 Attribution may be reversed.

[^5]: ${ }^{5}$) Mainly 3:2 mixture of two isomers. Signals of the predominant isomer are indicated in italics. Signals of other isomers (low intensities) are not listed.

